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ABSTRACT

Motivation: Membrane transport proteins play a crucial role in the

import and export of ions, small molecules or macromolecules

across biological membranes. Currently, there are a limited number

of published computational tools which enable the systematic

discovery and categorization of transporters prior to costly experi-

mental validation. To approach this problem, we utilized a nearest

neighbor method which seamlessly integrates homologous search

and topological analysis into a machine-learning framework.

Results: Our approach satisfactorily distinguished 484 transporter

families in the Transporter Classification Database, a curated and

representative database for transporters. A five-fold cross-validation

on the database achieved a positive classification rate of 72.3% on

average. Furthermore, this method successfully detected transport-

ers in seven model and four non-model organisms, ranging from

archaean to mammalian species. A preliminary literature-based

validation has cross-validated 65.8% of our predictions on the 11

organisms, including 55.9% of our predictions overlapping with

83.6% of the predicted transporters in TransportDB.

Availability and Supplementary information: http://bioinfo.noble.org/

manuscript-support/transporter/

Contact: pzhao@noble.org

1 INTRODUCTION

Membrane transport proteins, or simply transporters, support

basic biological processes in living cells by moving essential

nutrients and metabolites, such as ions, small molecules and

macromolecules across biological membranes. As a conse-

quence of transport protein activity, cells are able to maintain

physiological concentrations of ions for essential physicochem-

ical potential of cells, import and export signaling molecules to

mediate intercellular communications, and prevent the accu-

mulation of toxins since transporters function as toxin pumps

(Yan, 2003).
Various biomedical, biological and biophysical techniques

have been developed to screen transporters and to determine

their transport mechanisms (Yan, 2003). For instance, mem-

brane proteins are inserted into lipid bilayer membranes by

reconstitution methods and the resulting liposomes are capable

of recapitulating the transporters’ function for further analysis

(Rigaud et al., 1995). The patch clamp techniques have been

applied to identify transported substrates and to study the

transport mechanisms of ionic channels in excitable membranes

(Sakmann and Neher, 1984). However, current experimental

techniques are often inefficient in labor and cost, and require

sophisticated skills. Therefore, computational methods are

desired to select candidates in high confidence for experimental

study to maximize the outcome of benchwork.

Computational methods, especially machine-learning meth-

ods, require a large set of curated data for training. The

IUBMB-endorsed transporter classification database (TCDB),

which employs a hierarchical, functional and phylogenetic

classification system, is suitable for this purpose (Busch and

Saier, 2002; Saier, 2000; Saier et al., 2006). The transporters

in the database are hierarchically categorized into classes,

subclasses, superfamilies, families and subfamilies. In particu-

lar, the classification of families is based on their phylogeny

(Chang et al., 2004), hydropathy (Zhai and Saier, 2001),

substrate specificity (Paulsen et al., 1998) and transmembrane

topology. The strength of this system lies in the fact that the

homologous transporters in a common family share the similar

transport functions. Therefore, if a novel protein is classified

into a family, its transport mechanism or pathway can be

postulated. Other systems such as Pfam (Sonnhammer et al.,

1997) are not suitable to use homology to make such an

inference.
Sequence homology search, motif search and machine-

learning techniques have been employed to predict membrane

transporters from their primary amino acid sequences based on

the catalogued information about known transporter proteins.

Using the sequence homology approach, unknown proteins are

characterized as putative transporters if their sequences are

homologous to previously identified transporter sequences.

BLAST (Altschul et al., 1990) has been widely applied in the

homology search. For example, TransportDB is a putative

transporter database annotated through the assistance of

BLAST search for hundreds of completely sequenced organ-

isms (Ren et al., 2004, 2007). Although BLAST-based methods

may accurately identify many real targets, these methods also

incorrectly identify numerous false positives because homol-

ogous sequences, especially paralogs, may evolve in quite*To whom correspondence should be addressed.

� 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bioinfo.noble.org/
http://creativecommons.org/licenses/


distinct transport functions (Doolittle, 1981). Therefore,
extensive human annotations are still required after the
BLAST search.

In contrast to sequence homology approach which searches
individual sequences in the transporter database, the motif-
based approach relies on the use of motifs or profiles using

traditional family modeling methods such as Hidden Markov
Model (HMM) (Krogh et al., 1994), PST (Bejerano and
Yonam, 2001; Eskin et al., 2003) and PROTOMAT

(Henikoff and Henikoff, 1994) in order to characterize
transporter families in the database. Motif-based methods
often require a minimal number of transporters for modeling

and may suffer from the low levels of conservation amongst
transporter families such as potassium channels (Heil et al.,
2006) and Naþ/Hþ exchangers (Dibrov and Fliegel, 1998).

Moreover, although Pfam (Sonnhammer et al., 1997) and
TIGRFAMS (Haft et al., 2001) contain some motifs about
certain transporter families/superfamilies, there are a limited

number of dedicated and comprehensive database of trans-
porter motifs. As a result, tools such as INTERPROSCAN
(Zdobnov and Apweiler, 2001) often miss a large percentage of

putative targets, resulting in very low search efficiency.
The machine-learning approach is quite dissimilar to each of

the two previously discussed methodologies. This method relies

on predictions made from the rules that have been learned from
curated data. A support vector machine (SVM) method was
reported by Lin et al. (2006) with 60–97.1% accuracy on five

transport superfamilies and three families. Although the SVM
method can successfully identify putative transporters in some
transporter families, like many other machine-learning meth-

ods, this technology requires a large number of trained trans-
porters, which is impractical for most existing transporter
families.

In addition to the three major approaches discussed,
a number of other methods also exist including some which
are based simply on the numbers of transmembrane segments

(TMS) (Schwacke et al., 2003). These methods often lead to
very high false positive rates since the transmembrane segments
taken into consideration do not generally indicate transport

functions, thus making the TMS-based methods alone ineffec-
tive in predicting transporter proteins. For instance, more than
40% of proteins in the model plant organism, Arabidopsis

thaliana, have putative TMS, but520% of these proteins are
transporters (Schwacke et al., 2003).
In summary, although TCDB and TransportDB and their

associated tools, such as SSEARCH (Saier et al., 2006), have
been widely used to predict and classify putative transporters,
their prediction performance has been seldom reported. In this

article, we propose a simple Nearest Neighbor (NN) approach
which seamlessly integrates homology searches, motif searches
and topological analysis into a machine-learning framework

in order to cover as many transporter families as possible. We
integrate homology and motif search methods by combining
their scores in the similarity measurement of the NN approach.

To circumvent the absence of credible and comprehensive non-
transporters in the transporter training datasets, we further
integrate transmembrane segment information in preprocessing

in order to filter out unlikely transporters. We demonstrated
the effectiveness of the integration using both five-fold

cross-validation and literature-based validation on seven

model organisms and four non-model organisms including

archacean, bacterial, plant, insect and mammalian species.

2 METHODS

2.1 Training and prediction of transporters

Our training data was downloaded from the TCDB website (Saier et al.,

2006) in December 2007 and contained 4155 transporters within 740 TC

families. We excluded the 256 families that contained a single family

member and included the remaining 3899 transporters and 484 TC

families in our study. Our approach utilized NN classification of the

TCDB, as shown in the Transporter Prediction module (Fig. 1). Using

the simplest NN classification, the unknown protein is assigned the

family of a previously described transporter in the TCDB which is most

similar to the unknown protein (Cover and Hart, 1967), based on global

or local scores, such as BLAST e-values. The use of this methodology,

however, may result in inaccurate predictions since the unknown

protein can only be assigned to the family of the most similar protein

if it is present in the database. Therefore, the possibility exists that

without checking the universal protein databases, such as NCBI RefSeq

(Pruitt et al., 2005) and SWISS-PROT (Apweiler, 2001), a putative

transport protein will be assigned to the wrong family of transporters.

However, in most cases, the protein most similar to the unknown

protein in the universal database is not annotated and therefore does

not provide sufficient insight into the functional annotation of the

unknown protein. Moreover, in utilizing the NN classification, the

poential exists that the true family of the unknown protein may not be

with the NN, but will most likely be within the k-NN (k is a small

constant number), since the homologous sequences may have evolved

to perform different transport functions. Therefore, K-NN methods

thus may be applied in this case to improve the accuracy with

a weighting strategy to identify the most likely function-identical

neighbors in the protein database (Horton and Nakai, 1997).

Our strategy did not depend on analysis of the universal protein

databases and did not use KNN directly, but rather followed its

weighting strategy. The sequence similarity between an unknown

protein and every transporter protein in the training database

TCDB was weighted by comparing the unknown protein to the

family of the compared classified transporter. Consequently, the

unknown protein was classified into a TC family that contained both

a member that was highly similar to the unknown protein in sequence

Build model for every possible family

Calculate TMS for
transporters

Input sequences

Score integration and decision making

Output

BLAST search HMM scoring TMS calculation

Transporter Prediction

Model Construction

Parameter tuning

Build BLAST DB

Fig. 1. The flow of our transporter modeling and prediction.
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as well as members that contained characteristics/motifs matching the

unknown protein.

In our approach, the extent to which an unknown protein

was matched to a family of transporters was measured by a HMM

program known as the Sequence Alignment and Modeling System

(SAM) (Krogh et al., 1994). This methodology was utilized since

HMM models are able to efficiently capture the conserved features

of a transport family and, more importantly, the SAM program does

not require pre-alignments of transporter sequences in the family.

The option of pre-alignments in SAM facilitates the weighting process

since many transporter families do not possess well-accepted

alignments.

In the weighting process, two practical issues were considered. First,

a stratgy had to be developed by which to overcome the problem of

weighting every transporter in TCDB. For some transporters, it is

impossible to apply the weighting due to 1) The families of the

transporters may contain too few members to be modeled by HMM

and 2) The transporters may be too dissimilar to the query protein, such

that most BLAST programs will not report them. For transporters

with hits by a single search method, their scores under the single

measurement should be comparable with the ones with weighted

measurement. In order to compare these transporters, we applied the

same measurements in the HMM scoring and BLAST scoring, namely

e-value scores, and assigned the square root of their product as the

weighted score, if the weighting was possible.

The second issue that was necessary to address was associated with

the negative training data. Usually, transporter databases such as

TCDB only contain transport proteins without specifying non-

transport proteins, such as membrane proteins without transport

functions. Lacking the negative information, many traditional classi-

fication methods would not work because positive features are

undistinguishable from the negative ones. Therefore, we used the

putative transmembrane segment (TMS) information, generated by

either TMPRED (Hofmann and Stoffel, 1993) or HMMTOP (Tusnady

and Simon, 2001), which enabled us to circumvent this problem, to

some extent. It was observed that the numbers of transmembrane

segments in most transporter families tended to vary slightly depending

on the specific transport requirements and duplication processes that

occurred during evolution. Therefore, our strategy set a minimal

requirement for family membership; the number of transmembrane

segments for an unknown protein must be within 1 SD of the mean

number of transmembrane segments in that family for the candidate

to be included in the family. Since non-transporters have either

no transmembrane segments or the numbers of TMSs outside of

the normal distributions of many transporter families, these non-

transporters, including the membrane proteins without transport

functions, were likely to have been filtered out during preprocessing.

TMS number was not chosen as a filter simply because there are many

proteins in TCDB with no reported TMS, but rather because more than

10% of transporters in TCDB failed to detect any TMS in both

HMMTOP and TMPRED methods. Therefore, this simple filter will

eliminate most non-transporters while retaining most transporters for

analysis.

In order to demonstrate the proposed approach, a prediction web

server, as well as a command line interface, was implemented. The

Decypher hardware system, provided by Active Motif Incorporation,

was utilized to conduct the BLAST search and multiple CPU/

computers were run in parallel to perform HMM modeling and

scoring. HMM models for all transporter families were pre-calculated

and stored in order to improve the prediction speed. For the

automatization of the predictive pipeline, default and uniform

parameters were used for all TC families in all procedures, in particular,

the threshold for Blast search was set to 100 and the threshold for family

sizes applicable to HMM modeling and TMS filtering was set to 5.

The final e-value threshold for transporter inclusion or exclusion was

examined from 10 down to 0.0001, the frequently used e-values in

sequence homologous searches. A detailed description of the parameters

and the mathematical representation of our NN approach are present

in the Supplementary Materials.

2.2 Five-fold cross-validation and literature-validation

To self-evaluate the classification performance of our NN approach,

a five-fold cross-validation was conducted (Schaffer, 1993). The

training transporter database, TCDB, was partition into five folds for

training and testing. The fold partition was performed family by family.

In each family with at least two members, the transporters were selected

randomly and distributed into the five folds by natural order, until

no transporter was available. For the natural order, the smaller folds

had a higher priority than the larger folds in acquiring remaining

transporters.

In order to evaluate the performance of an individual TC family in

cross-validation, the precision and recall of each family was calculated;

precision was defined as the proportion of correctly classified trans-

porters among the total number of predictions in the family and recall

was defined as the proportion of correctly classified transporters

among the total number of transporters in the family. To evaluate the

performance for multiple families, measurements such as the area under

Receiver Operating Characteristic curve (Hand and Till, 2001) should

be utilized; however, due to complication in calculation and explana-

tion, the average precision and recall among the multiple families were

calculated as an approximation. The performance of the entire cross-

validation was estimated by applying correct classification rate, or for

short, classification rate, a simple and well-accepted measurement. The

classification rate of a cross-validation was defined as the proportion of

testing transporters which had been correctly classified. Since there were

no negative samples in the dataset, it should be strictly termed as

positive classification rate. In addition, we also used the measurement

to compare two classification methods, under fixed or nearly fixed prior

distributions among distinct transporter families, since the positive

classification rate was partially dependent on the prior probabilities of

the families.

To further examine the performance of our approach on real data

where negative data are present, seven model organisms and four

non-model organisms were chosen in our prediction and literature-

validation. These organisms included: Esherichia coli O157:H7

EDL933, Saccharomyces cerevisiae S288C, Drosophila melanogaster,

Caenorhabditis elegans, A.thaliana, Oryza sativa, Homo sapiens,

Picrophilus torridus DSM 970, Photobacterium profundum SS9,

Desulfotalea psychrophila LSv54 and Aspergillus fumigatus. It is

expected that the average performance of each organism will serve as

a benchmark for the overall performance of our approach since there

are no represented transporters in the TCDB for non-model organisms.

Sequence data for each of the 11 organisms included in our analysis

was acquired from NCBI, with the exception of S.cerevisia and

O.sativa, which were download from SGD (ftp://ftp.yeastgenome.org/

yeast/data_download/sequence/genomic_sequence/orf_protein/archive/)

and TIGR (ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/o_sativa,

version 4.0) and each genome version acquired was the one that

mostly matched those in TransportDB, based on its reported amounts

of proteins (http://www.membranetransport.org/complete_list.php).

The literature-validation of each of the 11 organisms was performed

in two steps. Firstly, we compared the categorized transporters with

those in TransportDB (Ren et al., 2004, 2007) and calculated the

proportion of proteins that overlapped. The comparison was convin-

cing since the predictions in TransportDB had been annotated by

biologists. Secondly, we compared the functional annotations accom-

panying with the predicted transporter sequences with the descriptions

of the predicted TC families. Since the annotation information was
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blinded during the prediction, we then analyzed the percentage of

significant words in the description of TC families. In order to perform

this analysis, a simple text mining program was developed which

automatically identified overlapping words and then removed obviously

insignificant English words. In addition, the program was designed to

identify compatible words when calculating the percent of overlap,

based on a series of compatibility rules generated on the basis of

biological activity; for example: the abbreviation Kþ was compatible

with words such as potassium, ions and metal.

3 RESULTS AND DISCUSSION

3.1 Results of five-fold cross-validation

The 3899 transporters within 484 TC families of TCDB were

partitioned into five folds. At least 219 TC families were tested

in all folds, including at least 160 ones which were built with

HMM models (see the Supplementary Material for partition

details). These data indicated a much larger coverage than

those of SVM approaches utilized by Lin et al. (2006) which

analyzed five TC superfamilies and three TC families.
Among the 484 families tested in at least one fold, 192

(�40%) had precisions and recalls of over 90% at the e-value

threshold of 0.0001, a typical threshold in homologous

searches. Of these 192 families, 147 had a perfect performance

(Fig. 2). These results significantly outperformed those of

other competitive approaches such as SVM (Lin et al., 2006)

and probabilistic suffix trees (PSTs) (Leonardi, 2006). In the

SVM approach (Lin et al., 2006), an average precision of 81.0%

was only achieved on the five superfamilies and three families.

The PST approach (Leonardi, 2006) only achieved comparable

results to ours on about 10 families or superfamilies (details

shown in the Supplementary Material).

Clustering the 484 TC families by size, our approach

performed worse in smallest families, with a recall and precision

of approximately 57.8 and 56.6%, respectively; both of which

were dominated by the BLAST search (Fig. 3). Using our

methodology, the recall and the precision increased in cor-

relation with family size with larger families yielding higher

recall and precision; however, precision increased more rapidly

than the recall, with a range of 16.4–40.2% as compared with

a range of 9.3–23.0% for increased recall. We believe that the

observed difference in precision levels can be attributed to

the more training sequences in the larger families and more

importantly, by the removal of false positives through the

integrated HMM weighting and TMS filtering.
The overall positive classification rates of the five-fold cross-

validation is 72.3%, as determined by average classification

rates of 74.4%, 73.8%, 72.6%, 71.7%, 71.3%, 70.2% with

respect to e-value thresholds 10, 1, 0.1, 0.01, 0.001 and 0.0001,

respectively. For families containing at least five transporters

(corresponding to fold five), the average positive classification

rate was 76.1% with a range from 72.9–77.9% among all

the e-value thresholds. On the fixed e-value thresholds, the

variation of positive classification rates was within 8.6% among

the five folds, with smaller folds generally worse than larger

folds. This variation on the classification rates is mainly caused

by the inapplicability of HMM models in the small families of

the smaller folds.

The results in the five-fold cross-validation suggest that

our NN approach satisfactorily distinguished the hundreds

of transporter families in the TCDB through the integration of
BLAST searches, HMM modeling and TMS filtering.

3.1.1 Comparative results on alternative combining

strategies To examine the combined effectiveness of our
approach, we compared alternative combinations of strategies
among BLAST search, HMMmodeling and TMS filtering, and

evaluated them by the positive classification rates in the five-fold

cross-validation at the e-value thresholds from 10 to 0.0001.
Firstly, we compared the performance of BLAST search and

HMM modeling used in our combined approach. We ignored

the TMS filtering since it was unable to singularly model

TC families acceptably (Schwacke et al., 2003). The positive
classification rates of the large TC families, with more than five

members, were analyzed using each of the two described
methods (Fig. 4, compare upper and lower curves). The results

of this study conclusively demonstrate that BLAST search
outperformed HMM modeling in separating large TC families,

under the variations of the e-value thresholds. It is also

interesting to note that the BLAST search on all TC families
(Fig. 4, middle curve) even outperformed the HMM modeling

on large families in term of positive classification rates. These
results are consistent with previously reported studies (Zhou

et al., 2003) and demonstrate why HMM modeling is not
widely accepted as an independent method for transporter

categorization.
Next, we examined the impact of combining HMM modeling

into BLAST search on modeling performance. The integration

Fig. 3. The average precision and recall at different ranges of family

sizes, where [a,b) means family sizes are from a to b, including a but

exluding b.

Fig. 2. The number of TC families with respect to specified

performance ranges at e-value threshold 0.0001.
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of HMM weighting resulted in a slight decrease of positive

classification rates, which was 1.6% on average at the e-value

thresholds, although in some cases, these rates demonstrated

a slight increase. Since these analysis did not include negative

samples, we next investigated the overall classification rate of

the weighted strategy which we hypothesized would be higher

than that of the BLAST search alone, since HMM modeling

can filter out many false positives that are not characteristic

of a specific family (Krogh et al., 1994). The hypothesis was

confirmed in our literature-based validation of the 11 organ-

isms, where the overall validation rates increased 7.0% on

average. These results indicated that our methodology com-

bines the strengths of the two methods.

Finally, we examined the impact of integrating TMS filtering

into BLAST search and HMM modeling on performance.

Again, the integration of TMS filtering resulted in a marginal

decrease of positive classification rates, which was 1.9% on

average at the e-value thresholds. When we performed the

literature-based validation of the 11 organisms, the overall

validation rates increased 3.7% on average after the TMS

filtering. The two-fold impact of the TMS filtering was left as

an option to users in our web server implementation, since in

some cases, such as in partial EST sequences, the TMS filtering

is not significant. The impacts of integrating TMS into BLAST

search or into HMM modeling had similar results and can be

referred to the Supplementary Materials.

The results of the comparative performance study suggest

that our combined strategy is effective, due to the successful

tradeoffs among BLAST search, HMM modeling and TMS

filtering.

3.2 Literature-validation results on model and

non-model organisms

The e-value threshold was set to 0.0001 in the prediction

of transporters in the examined organisms since previous

studies have concluded that this is an acceptable value for

homologous searches (John and Sali, 2004). The complete

results are shown in the Supplementary Materials. Overall, the

predicted percentage of transporters was between 3.4 and 9.2%

for eukaryotic species, and between 12.6 and 16.3% for

archaean and bacterial species (refer to the second and the

third column of Table 1). The predicted percentages were
consistent with the overall range in TransportDB, especially
considering the higher percentages of transporters in archaean

and bacterial species as compared to eukaryotic species
(Paulsen et al., 1998; Ren et al., 2007). In addition, the
predicted transporters were observed to contain significantly

larger numbers of transmembrane segments (3.7 to 6.0 time
more) than those in the rejected non-transporters, which
implied that our predicted proteins were more likely to be

transporters than the rejected ones (Supplementary Materials).
The literature-validation results of the predictions are

summarized in Table 1. An average of 65.8% of the pre-

dicted transporters were confirmed to be correctly categorized
through our literature-based validation, including 55.9%
of these categorized transporters was validated through

TransportDB. The validated percent demonstrated an 83.6%
overlap with putative transporters in the corresponding part of
TransportDB. Among the overlaps, �97.8% of them were

exact matches, specifically these proteins were predicted as the
same TC families or superfamilies. This is significant consider-
ing that TransportDB only reports superfamilies for some

transporters. The remaining 2.2% of the overlapping predic-
tions, so-called partial matches, were the proteins being
predicted as transporters by both approaches but with

conflicting superfamilies or families. Finally, it was believed
that a significant portion of the unvalidated populations of
putative transporter proteins were correctly categorized based

on manual examinations of annotation information, along with
the protein sequence data, through a random selection
(Supplementary Material).

When we compared model and non-model organisms, where
latter had no represented transporters in TCDB, there were no
substantial differences in the overlapping rates and total

validation rates. In analyzing the validation rates, we deter-
mined that there was less than a 2% difference, on average,
between the two groups of organisms. Comparing our

approach with alternative combined strategies, the integration
of HMM modeling into BLAST search resulted in an average
validation rate increase of 7.0%. Additionally, the overlapping

rates with TransportDB demonstrated an average increase of
1.6% (Table 2). These data indicated an essential enhancement
of HMM modeling to the BLAST search. On the other hand,

TMS filtering had a two-fold impact on BLAST search and
HMM modeling, with decreased overlapping rate but increased
validation rate (Table 2).

Further examination of the performance of individual TC
families demonstrated that average validation rates of 81.31
and 88.22% were achieved for families belonging to the two

largest superfamilies among all the organisms (Chang et al.,
2004), specifically facilitator superfamily (MFS) and ATP-
binding-cassette superfamily (ABC). Of the 51 largest TC

families whose predictions occurred in at least 2% of one or
more organisms, 26 families were validated at least 80%.
Furthermore, it was determined that an average of 91.70% of

all predicted carrier families were validated. Finally, of the 395
TC families with at least one predictions, 248 (�63%) families
were validated at least 60% (Supplementary Material).

One of the major concerns with regard to our validation
results was that the number of predictions in our approach,

 55

 60

 65

 70

 75

 80

 85

 90

0.00010.0010.010.1110

Po
si

tiv
e 

cl
as

si
fi

ca
tio

n 
ra

te
s 

in
 p

er
ce

nt
ag

e

E-value thresholds

BLAST for family size>5
BLAST for all families

HMM for family size>5

Fig. 4. Performance comparison between BLAST search and HMM

modeling on classifying transporter proteins, evaluated by positive

classification rates.

1133

Automated transporter prediction and categorization



in some instances, was nearly twice that of TransportDB. We

believe that there are three likely causes for his observation:

(1) TransportDB only focuses on solute and cytoplasmic

membrane ion transporters and artificially excludes some

transporter families such as sodium ion-transporting carboxylic

acid decarboxylases (Ren et al., 2004); (2) Our approach may

identify many novel members of transporter families or

superfamilies that TransportDB does not. For example,
among the 349 predictions in H.sapiens that were validated

by our methodology, but were not identified by TransportDB

(Table 1, eighth column), 117 were in families or superfamilies

that TransportDB studied. Therefore, some of the novel

predictions may have been identified as a consequence of the

integration of HMM models. For example, a tumor suppres-

sing protein in H.sapiens named GI:34734073/NP_899056 was

identified as a member of transporter family 2.A.1.2 by our

approach but excluded from the superfamily 2.A.1 that

TransportDB reported. Its BLAST e-value of 24.76 to the

superfamily was somewhat large and would therefore be

excluded from consideration by most BLAST searches.

However, in our approach the weighted e-value was 5.15e�10

and could be detected by most e-value thresholds, which was

attributed to an HMM e-value of 1.07e�20 and (3) Our
approach may identify some novel transporters without TMS

and this population of putative transporters may encompass up

to 11–20% of predictions (Supplementary Material), since our

method uses the SD of TMS on transporter families to filter

unlikely proteins rather than used non-zero TMS numbers as

filters. Although the proportion of predictions was in low-

confidence, a number of true transporters were identified and

Table 1. The validation results of our predictions by TransportDB and our preliminary text mining program at e-value threshold 0.0001

Organism Number of Our TransportDB Exact Partial TransportDB Our validated Overlap Total validated

proteins predictions predictions matches matches unique unique rate (%) rate (%)

E.coli 5324 865 579 484 18 77 101 86.70 69.71

S.cerevisiae 6310 582 341 303 5 33 19 90.32 56.19

D.melanogaster 13 779 971 647 539 7 101 60 84.39 62.41

C.elegans 20 051 1214 669 561 12 97 115 85.50 56.67

A.thaliana 26 536 1593 976 845 15 116 162 88.11 64.16

O.sativa 55 890 1668 1285 968 36 281 133 78.13 68.17

H.sapiens 27 960 1801 948 822 15 111 349 88.29 65.85

P.torridus 1535 193 171 123 5 43 27 74.85 80.31

P.profundum 5491 800 582 463 7 112 70 80.76 67.50

D.psychrophila 3234 442 305 230 7 68 47 77.70 64.25

A.fumigatus 9923 864 620 518 7 95 69 84.68 68.75

Exact matches: proteins predicted both by our approach and TransportDB, with the same TC families or superfamilies. Partial matches: proteins predicted as

transporters by both methods but with conflicted TC superfamilies if existed or families if not existed. TransportDB unique: the proteins occurring in TransportDB but

absent in our predictions. Our validated unique: the proteins missed in TransportDB but validated by annotations together with protein sequences. Overlap rate: the sum

of exact matches and partial matches divided by the number of predictions by TransportDB. Validation rate: the sum of exact matches, partial matches and our validation

unique divided by the number of our predictions.

Table 2. Comparison of prediction and validation results among alternative combinations of methods at e-value threshold 0.0001

Organism Predicted transporters Overlap rate with TransportDB (%) Validation rate (%)

ALLa BLAST & HMM BLAST ALLa BLAST & HMM BLAST ALLa BLAST & HMM BLAST

E.coli 865 916 933 86.70 90.50 89.29 69.71 68.34 66.67

S.cerevisiae 582 609 681 90.32 92.67 91.20 56.19 55.01 49.05

D.melanogaster 971 1095 1289 84.39 87.79 85.94 62.41 57.44 48.10

C.elegans 1214 1357 1534 85.50 88.49 85.05 56.67 52.47 44.85

A.thaliana 1593 1757 2177 88.11 90.27 90.88 64.16 59.36 48.78

O.sativa 1668 1957 2575 78.13 85.37 86.69 68.17 63.67 50.14

H.sapiens 1801 2236 2769 88.29 93.04 93.57 65.85 56.93 47.85

P.torridus 193 199 182 74.85 77.19 63.16 80.31 79.90 73.63

P.profundum 800 871 925 80.76 84.02 84.02 67.50 64.52 61.08

D.psychrophila 442 493 538 77.70 80.00 81.64 64.25 59.43 56.32

A.fumigatus 864 980 1080 84.68 92.58 92.42 68.75 66.12 60.28

Average 83.58 87.45 85.81 65.82 62.11 55.16

aThe approach we applied in this article which combined BLAST searches, HMM modeling and TMS filtering.
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confirmed by manual validation. For example, a nicotinamide
ribonucleoside (NR) uptake permease in E.coli named
GI:5804961/NP_291003 had no detected TMS by either

HMMTOP or TMPRED, but was correctly categorized into
the corresponding TC family 4.B.1 using our approach.
The literature-validation results of model and non-model

organisms indicated that our NN approach is effective and
therefore shows great promise as a methodology to screen
putative transporters from unknown protein sequences on a

genome scale. We are currently using these approaches to
generate predictions and verify these predictions using wet-lab
techniques on the model legume organism Medicago truncatula

and fungal organism Epichloe festucae.

4 CONCLUSION

In summary, we have developed an automated approach for
transporter prediction and categorization through seamlessly

integrating the analysis of three types of information from
protein sequences within a modified NN framework.
Specifically this approach integrates the analysis of (1) TMS

information, which was used to preprocess data by filtering out
sequences based on conflicted TMS numbers; (2) BLAST
e-value scores, which were used as the primary measurement of

similarity in the NN classification and (3) HMM e-value scores,
which were weighted to reflect the extent to which an unknown

protein matched to the overall feature of a family. By
combining HMM scores, an unknown protein was categorized
into a TC family based on how well the unknown protein

matched one of the transporters in the family as well as how
well the features of the putative family member protein
matched the overall features of the family. To examine the

effectiveness of our proposed approach, we conducted a five-
fold cross-validation on TCDB and literature-based validations
to the predictions of both model and non-model organisms.

The validation of our methodology by these two criteria
demonstrated the effectiveness of our approach in detecting
unknown transporter proteins and postulating their unknown

transport mechanisms on a genome scale.
Our described approach is distinct from related methods such

as TCDB and TransportDB in a number of ways including:

(1) neither TCDB nor TransportDB utilize HMM in modeling
the characteristics of TC families or in predicting novel
transporters, although TCDB uses HMM in topological

analysis following the preliminary predictions; (2) while our
methodology is independent of potential human biases, both

TCDB and TransportDB involve human intervention, espe-
cially TCDB is highly dependent upon an intensive human
curation of data and (3) in TCDB, other information including

substrates were analyzed; however, our approach depends
solely upon primary sequences data (Busch and Saier, 2002;
Ren et al., 2004, 2007; Saier, 2000; Saier et al., 2006).

Nevertheless, our approach has some constraints. First, it
may suffer from lack of credible and comprehensive negative
samples in the training data. Secondly, since it is confined by

the features presented in the TCDB, the potential exists that
certain novel types of transporters will not be detected. We
believe that the constraints of the novel methodology described

in this study have the potential to be overcome by integrating

the analysis of additional reference databases such as PFAM

(Sonnhammer et al., 1997), TIGRFAMS (Haft et al., 2001),

GO (Ashburner et al., 2000) and SWISS-PROT (Apweiler,

2001) which will result in more confidence and enable clustering

of the unknown sequences in order to detect additional novel

types of transporters. Nevertheless, the computational method-

ology described in this work represents a novel strategy for the

identification and categorization of putative transport proteins

based on protein sequence analysis.
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